Polynomial-Sized Topological Approximations Using the Permutahedron

نویسندگان

  • Aruni Choudhary
  • Michael Kerber
  • Sharath Raghvendra
چکیده

Classical methods to model topological properties of point clouds, such as the Vietoris-Rips complex, suffer from the combinatorial explosion of complex sizes. We propose a novel technique to approximate a multi-scale filtration of the Rips complex with improved bounds for size: precisely, for n points in R, we obtain a O(d)-approximation with at most n2O(d log k) simplices of dimension k or lower. In conjunction with dimension reduction techniques, our approach yields a O(polylog(n))-approximation of size nO(1) for Rips filtrations on arbitrary metric spaces. This result stems from high-dimensional lattice geometry and exploits properties of the permutahedral lattice, a well-studied structure in discrete geometry. Building on the same geometric concept, we also present a lower bound result on the size of an approximate filtration: we construct a point set for which every (1 + ε)-approximation of the Čech filtration has to contain nΩ(log logn) features, provided that ε < 1 log1+c n for c ∈ (0, 1). 1998 ACM Subject Classification F.2.2 Geometric problems and computation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The best uniform polynomial approximation of two classes of rational functions

In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.

متن کامل

M-polynomial and degree-based topological indices

Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...

متن کامل

Bandit Online Optimization over the Permutahedron

The permutahedron is the convex polytope with vertex set consisting of the vectors (π(1), . . . , π(n)) for all permutations (bijections) π over {1, . . . , n}. We study a bandit game in which, at each step t, an adversary chooses a hidden weight weight vector st, a player chooses a vertex πt of the permutahedron and suffers an observed instantaneous loss of ∑n i=1 πt(i)st(i). We study the prob...

متن کامل

Narumi-Katayama Polynomial of Some Nano Structures

‎    The Narumi-Katayama index is the first topological index defined by the product of some graph theoretical quantities. Let G be a simple graph. Narumi-Katayama index of G is defined as the product of the degrees of the vertices of G. In this paper, we define the Narumi-Katayama polynomial of G. Next, we investigate some properties of this polynomial for graphs and then, we obtain ...

متن کامل

Polynomial-sized semidefinite representations of derivative relaxations of spectrahedral cones

We give explicit polynomial-sized (in n and k) semidefinite representations of the hyperbolicity cones associated with the elementary symmetric polynomials of degree k in n variables. These convex cones form a family of non-polyhedral outer approximations of the non-negative orthant that preserve low-dimensional faces while successively discarding high-dimensional faces. More generally we const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016